Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Int J Infect Dis ; 122: 449-460, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2000448

RESUMEN

OBJECTIVES: The characterization of asymptomatic and mildly symptomatic patients with COVID-19 by observing changes in gene expression profile and possible bacterial coinfection is relevant to be investigated. We aimed to identify transcriptomic and coinfection profiles in both groups of patients. METHODS: A ribonucleic acid (RNA) sequence analysis on nasopharyngeal swabs were performed using a shotgun sequencing pipeline. Differential gene analysis, viral genome assembly, and metagenomics analysis were further performed using the retrieved data. RESULTS: Both groups of patients underwent a cilia modification and mRNA splicing. Modulations in macroautophagy, epigenetics, and cell cycle processes were observed specifically in the asymptomatic group. Modulation in the RNA transport was found specifically in the mildly symptomatic group. The mildly symptomatic group showed modulation in the RNA transport and upregulation of autophagy regulator genes and genes in the complement system. No link between viral variants and disease severity was found. Microbiome analysis revealed the elevation of Streptococcus pneumoniae and Veillonella parvula proportion in symptomatic patients. CONCLUSION: A reduction in the autophagy influx and modification in the epigenetic profile might be involved in halting the disease progression. A global dysregulation of RNA processing and translation might cause more severe outcomes in symptomatic individuals. Coinfection by opportunistic microflora should be taken into account when assessing the possible outcome of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Coinfección , COVID-19/diagnóstico , Coinfección/diagnóstico , Humanos , Nasofaringe , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Análisis de Secuencia , Análisis de Secuencia de ARN
2.
Cells ; 11(15)2022 07 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1969102

RESUMEN

Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , COVID-19/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , SARS-CoV-2
3.
Noncoding RNA Res ; 5(4): 153-166, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-753054

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for coronavirus disease (COVID-19), potentially have severe kidney adverse effects. This organ expressed angiotensin-converting enzyme 2 (ACE2), the transmembrane protein which facilitate the entering of the virus into the cell. Therefore, early detection of the kidney manifestations of COVID-19 is crucial. Previous studies showed ACE2 role in various indications of this disease, especially in kidney effects. The MicroRNAs (miRNAs) in this organ affected ACE2 expression. Therefore, this review aims at summarizing the literature of a novel miRNA-based therapy and its potential applications in COVID-19-associated nephropathy. Furthermore, previous studies were analyzed for the kidney manifestations of COVID-19 and the miRNAs role that were published on the online databases, namely MEDLINE (PubMed) and Scopus. Several miRNAs, particularly miR-18 (which was upregulated in nephropathy), played a crucial role in ACE2 expression. Therefore, the antimiR-18 roles were summarized in various primate models that aided in developing the therapy for ACE2 related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA